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Mixed convection on a heated horizontal surface in the laminar flow regime has been 
investigated previously [1-3]. Martynenko and Sokovishin [i] have derived equations in the 
Boussinesq approximation for the laminar boundary layer in mixed convection and have obtained 
exact self-similar and approximate solutions of these equations by an approach similar to 
the Von K~rm~n--Pohlhausen method. Pirozhenko [2] has lifted the restrictions imposed by the 
Boussinesq approximation in the description of mixed convection and has used the Von K~rm~n-- 
Pohlhausen method to determine the thicknesses of the dynamic, thermal, and diffusion boundary 
layers. Chen and others [3] have numerically solved the boundary-layer equations in the 
Boussinesq form and analyzed the mutual influence of forced and free convection in flow over 
a heated horizontal plate. 

We now propose a formulation of the mixed convection problem for the cases of stable 
and neutral stratification of the medium [4] beyond the limits of the boundary layer. 

It is established in a qualitative analysis of the problem that with a decrease in the 
temperature of the underlying surface the frictional stress is greatly reduced for both 
laminar and turbulent flow, and boundary-layer separation can take place. Asymptotic ex- 
pressions for the frictional stress and heat flux are obtained by the method of Shvets [5]; 
for the laminar flow regime they agree with the results of the numerical calculations. An 
iteration-interpolation method [6, 7] and a digital computer are used to determine the limits 
of validity of the Boussinesq approximation and to show that under definite conditions free 
convection has little effect on the heat flux toward the flow surface. 

i. Statement of the Problem. Let us consider a stratified gas flow on an arbitrary 
heated plane surface, through which is injected a heated gas Of the same kind. This flow is 
described in the general case by the Navier--Stokes equations for laminar flow or by the 
Reynolds equations for turbulent flow [4]. In the case where the Reynolds number Re is large 
and the freestream mass flow rate is much greater than the injection mass flow rate PeUe >> 
(P~)w, the entire flow region can be partitioned into the boundary layer, in which molecular 
(molar) transport processes are significant, and the outer flow zone, in which viscous forces 
can be neglected. If it is assumed, in addition, that the composition of the gas remains 
unchanged, then the flow in the boundary layer is described by the system of equations 

Opu , apv O; 
ax a~ = (i.i) 

p u ~ + v . ~ u  = ~  ! t ~ .  v _ o - - ~ - _ p g s i n a ;  (1.2) 

8p pRT 
0-}" -~ - -  p g c o s c x ,  I-' ~ M ' p' == ,a.~ + ,U.r, ). = ~-~ + ~-,.; (1.3) 

(1.4) 

To close the system of equations (1.1)-(1.4) we assume that the turbulent kinematic 
viscosity ~T in the inner and outer parts of the boundary layer is described by the Van 
Driest equations [8] 

(1.5) 

Tomsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 
57-65, July-August, 1980. Original article submitted July 12, 1979. 
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The influence of stratification inside the boundary layer is taken into account in the 
Van Driest equation (1.5) insofar as the density and molecular viscosity, which depend on 
the temperature, enter into the expression for A. It cannot be claimed, of course, that 
this treatment is absolutely correct. Unfortunately, in the literature we cannot find any 
data on the effects of stratification inside the boundary layer on the transport coefficients 
for turbulent flows. Here we need additional experimental data, the acquisition of which 
can be the object of an independent study. Consequently, the numerical results given below 
for turbulent flows can be regarded as predictions requiring experimental verification. 

Equations (1.1)-(1.4) must be solved subject to the boundary conditions 

G = o  = o, (~/01 y=o : -  ( w ) d x ) ,  ~'1~=o = T~(x) ;  
ul~=~ :u~(x), Tlu=6 l--T~(x), 

(1.7) 

(1.8) 

where x and y are the longitudinal and normal coordinates in a cartesian system attached to 
the convex flow surface; u and v are the projections of the velocity in the x and y direction% 
respectively; p is the density; p is the pressure; T is the temperature; M is the molecular 
weight of the gas; cp is the specific heat of the gas; g is the acceleration of free fall~ 

is the kinematic ViSCOSity; ~ and 6~ are the dynamic and thermal boundary-layer thick- 
nesses, respectively; p and I are the effective viscosity and thermal conductivity 
of the gas; k = 0, I; ~ is the angle between the tangent to the surface and the 
horizontal plane; the indices M and T refer to the molecular and turbulent transport co- 
efficients; and the indices w and e refer to the values of the functions on the flow surface 
(wall values) and at the external boundary of the boundary layer, respectively. 

The system of equations (1.1)-(1.4) is deduced from the system of Navier--Stokes equations 
by the method of Prandtl [4, 8]. Unlike the classical boundary-layer equations, in the given 
formulation the equation of motion is invariant under projection onto the y axis in the form 
(1.3) due to the presence of the body force due to gravity. A pressure gradient in the x 
direction is initiated by the transverse pressure difference, and gradient flow takes place 
in the layer above the heated surface. 

If we set v T and I T equal to zero and invoke the Boussinesq approximation, then for a = 
0 from (1.1)-(1.4) we obtain the equations used in [i, 3]. 

To determine Ue, Te, and Pe it is necessary to solve the gasdynamical equations with 
appropriate boundary conditions. These equations cannot be solved analytically in the gen- 
eral case. However, for k = 0 in the case of isothermal and k = 1 in the case of isentropic 
flows it is possible to obtain integrals of these equations analytically: 

(i ' 
G c_Kp 

T~=const ,  "~e : c~' • = c v ,  (1.10)  

where c V is the specific heat at constant volume and C~e and Cze are constants, which in 
general change in transition from one streamline to another. 

To determine the boundary-layer thicknesses we adopt the conditions 

a_~ }=6 aT I : m~, (i.ii) : B~l~ ~ y::61 

which generalize the standard conditions [5], where in general ml and mz are functions of x 
characterizing the vorticity of the flow and the temperature gradient at y = @, 61. If the 
outer flow is isothermal, then mz = 0, whereas for adiabatic flows mz =--g/Cp. We have thus 
completed the statement of the problem, because once the velocity has been given, all other 
parameters of the outer flow can be determined. 
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2. Qualitative Analysis of the Problem on the Basis of the Momentum Integral Equation. 
If we transform to Dorodnits~owarth variab%es [8], eliminate v bY means of (i.i), and 
change over to dimensionless notation in Eq. (1.2), we obtain the integrodifferential 
equation 

(;) Ou Ou Ou 0 { Ou ~ sin ~ t Op Op I O l n P d  

0 0 

�9 u ~  uo=Pol 
u:z~--~, P =  Po' p =  --~" ' Po u ~o gl ' ~tr 

t t y t  

P o U ~ ]  e,  g =  l J ~ o d g " x = ' 7 "  
o 

(2.l) 

where u~ and ~ are the freestream velocity and viscosity, po is the minimum density inside 
the boundary layer, I is a characteristic length, and the prime is attached to dimensioned 
quantities. Integrating (2.1) with respect to y from 0 to ~ and making some simple trans- 
formations, we obtain an expression for the dimensionless frictional stress at the wall T w = 
~p ~u/~yly=o: 

6 

0 o 

• t - -  : dy - -  F~ V "-O-f-x dg d y -  3 ,o Ox dg , 
0 0 0 

�9 gf = ~ ,  

where U is the dimensionless outer flow velocity. We analyze relation (2.2) from the point 
of view of vanishing of the quantity ~w and the possibility of boundary-layer separation. We 
draw the following conclusions: 

i. The outer-flow vorticity, characterized by the quantity T e = ~p~u/~yly=5, stimulates 
boundary-layer separation if T e < 0 and inhibits separation if T e > 0. 

2. Injection always stimulates separation, whereas suction inhibits separation, because 
T w decreases with increasing (0V)w , whereas for (pv) w < 0 it increases. 

3. The third term promotes a decrease of T w for dU/dx < 0 (i.e., for retarded flows) 
and inhibits a decrease for dU/dx > 0, since U > u inside the boundary layer. 

4. The fourth term has the form 

0 0 0 

It is seen that the first integral is positive for accelerated flows and negative for 
retarded flows. The second integral is negative if the acceleration inside the boundary 
layer is greater than the acceleration at the external boundary of the boundary layer. 

5. If the freestream temperature is lower than the wall temperature, then Pe/P > i. 
Therefore, the integral in the fifth term is negative. In other words, the fifth term de- 
creases T w if the flow is retarded (dU/dx < 0) and a < O. 

6. The sixth term in relation (2.2) is associated with gravity forces. Inasmuch as 
Pe/P ~ i, it is evident that 

O l n p .  O l n P d  ' . - - ~ ,  O l n P d y  . 
ay 8 Ox g ~ -~ Ox 

o 

Therefore, the sign of the bracketed expression in the last term of (2.2) is determined by 
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' t Oln 9 _ t h e  s i g n  o f  ~ a l l ,  The s i g n  o f  t h i s  i n t e g r a l  i n  t u r n  d e p e n d s  on t h e  s i g n  o f  ~]np 
' ' 0 ~  

O 

Inasmuch as p ~ i/Tw, we have O l n p  ~ dTw , and separation can only occur under the 
Ox T~; dx 

condition that T w decreases with increasing x. Conversely, with an increase in Tw we have 
3 in 9/3x < 0, so that ~w increases and the probability of separation is diminished. It is 
important to note that in analyzing the sign of 3 in 9/3x in the general case it is necessary 
also to consider the sign of dTe/dx. Specifically, if Te = Te(x) and T w = Tw(x) , then 
separation can occur if dTe/dx < 0 and dTw/dx < 0. Boundary-layer separation does not occur 
if dTe/dx > 0 and dTw/dx > 0. Finally, in the event of opposite signs for these two deriv- 
atives the sign of 3 in p/3x depends on which derivative is the larger. 

It thus follows from the analysis of relation (2.2) that in the space of the parameters 
@w, B, Fr, Re, z e there can exist a surface separating the region corresponding to non- 
separating flow from the part of the parameter space corresponding to separation flow. 

3. Analytical Solution of the Problem by the Method of Shvets [5]. If flow is laminar 
and it is assumed that the product of the dimensionless forms of the viscosity, thermal 
conductivity, and density is equal to i, the solution of the boundary-value problem (i.i)- 
(i. II) can be reduced to the integration of Eq. (2.1) for ~p = 1 and the energy conservation 
equation 

' i Ou ') oO i a"-O_..u 004_ B - -  
Pr Og"- ~ ' �9 ~'~x dy 0 . '  

�9 D / 

in which ~ = T/T~, T~ = constant and the remaining variables are explained in Sec. 2. 

Using the method of Shvets [5], we obtain the following in the second approximation for 
flow over a plate 

0 o 

P r  

(U = i, k = 0): 

(~'l, H [~1 /  

~t.,-::: 6 2~5 a 

hgtg A!/ ] B A y ,  O,. , Ay 
~._,~6--~ + z%~: / (y:' - 6~) + ~ u  - 6) + e,. ~ p~q, 

_ _  ~_ B!I (g  - -  6) , ( 
" ~5  q v p~,K [~Ia (6) - -  I~ (6)] • 

,. L(y)-~4(6) -~ fl(y)-7 11 (6) Tg(y)--T&(6) 

I ( r A6 ~ Pe 

q (61 K f •  I •  
79flo(6), Io(6) -- 7ofla (6)_ i, I~(g):= 16,72k4.e~[[P~-~-V(6--Y)]~'< 

.. [2 1, (p~. ~- 7 (6 - -  y)) - -  11 - -  (p~ + 5,6) -~ t2 In (p~ ~- 75) - -  t]] - -  

u:2 ~ln (p~. ~,'8) ~- t] g- g 7 ....... lu (p,. + 76). @ ! 6~7~" "" 

[. ., (p~.-:- ~,~) + - 8 -  ,:'- . -:- ~,~ , 

I~ -- ','6 F;Age [[0'"-~ ._  h (pe -5 75 ) 5 1 7 ;  Y 7 " l n ~ p e - i - g ( 5 - - g )  , ' 

_t;5[_ . ~,S~ I . (6)  K5120~ ~7 /fi-~--'t] K/~/a A f A ~ - -  
L (5) = 7 k u , , .  - -  e%-~]' = FbTp4 " "  : d.~ \ 6, ,q' ["  (g) . . . . .  [ 6V d .  \ q ] : 

q_ __~_ 1 d V :/~ 't 
, , 7 ~i,-- ( ~  (P~ + v6) [ ,  4," [ ( ; '  -'- ~'' (6 - u)Y- (2 In (;,, + 

2 

7 (~ - v ) )  - 1) - (Pc + %)~  (2 In (> 75) -- 1)1 + 5 -  "~" 

; " - : - ; " s h , ( >  ~'~)]i. ;.: la [Pc F ? (5 - -  y)] --  z/ :-----7-- , ,  
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where the overhead dot signifies differentiation with respect to x. 

To determine the thicknesses of the dynamic and thermal boundary layers we apply con- 
ditions (i.ii), whereupon we obtain the ordinary differential equations 

hi == F:(6, 61, Pr,  Fr, Re, O,,, @~, U, K. B), 61(0) = 0, i = 1 ,  2. ( 3 . 1 )  

in which B = Vw R~e/u~ , K = RT~/Mu~ are dimensionless parameters and for brevity the specific 

forms of the functions F i are not given. 

For x<< 1 we have the asymptotic solution of the Cauchy problem (3.1) in the case of 

flow over a plate 

6 = 4 V'~, ~1 = 4Pr-~/3 ~fx', ( 3 . 2 )  

which agrees with the results of [5]. 

We can use (3.2) to obtain asymptotic expressions for the frictional stress and heat 
flux at the wall in dimensionless form for the case 0 e = const, @w = const, Pr = i, U = i: 

i B 57K (O~,-- 1). ( 3 . 3 )  
r ~ - -  -V7 2 ~- " 3 3Pe 

7 2 " (3.4) 

An analysis of (3.3) indicates that free convection does not significantly affect the flow 
regime in a laminar layer under the conditions stipulated by the inequalities 

i << Re~ < l0  ~, 57K(0~  - -  t)/3p~ << l / 3 ~ / x  - B/2, 

in which Re x is the instantaneous Reynolds number. 

4. Results of Numerical Solution. Along with the analytical solution we have carried 
out a numerical integration of the boundary-value problem (i.i)-(i.ii) for a = 0, ml = m2 = 0, 
correspondin~ to uniform flow over a horizontal plate with stable stratification of the me- 

dium [4].* Equations (1.1)-(1.4)are transformed in such a way that with the new variables 
[9] the domain of definition of Eqs. (1.2) and (1.3) varies from 0 to i. We use a difference 
scheme constructed by the iteration-interpolation method described in [6, 7]. The scheme 
has first-order approximation in the y direction and first-order in the x direction. The 
program is tested by running a comparison with the numerical results of [3]. Table 1 gives 
the values of the dimensionless frictional stress a = F"(~, 0) and the dimensionless heat 
flux b = --@'(~, 0) (in the notation of [3]) in the Boussinesq approximation, along with the 

same values obtained by solution of the boundary-value problem (i.i)-(I.ii). Here, Grx and 
Re x are the instantaneous Grashof and Reynolds numbers [3], c = (T w -- Te)/T w = 0.06, and the 
subscript 1 is attached to the quantities obtained by numerical integration of the boundary- 
value problem (i.i)-(i.ii). It is seen that the agreement with the numerical results of [3] 
is observed. It is curious that the agreement deteriorates with increasing value of c. Thus, 
for Grx/Re~/~ = 0.4 and c = 0.25 the quantity al exceeds a by 5%, and bl exceeds b by 3%, 
whereas for c = 0.77 s error of a increases to 50%, and that of b to 13%. Consequently, 
the Boussinesq approximation, as expected, yields a sizable error in the determination of the 

gross characteristics of the boundary layer. 

It has been determined as a result of the numerical calculations that for 0 < x i, 
0 < B < 2.5, 1 < @w ~5 the error of the asymptotic expressions (3.3) and (3.4) for an iso- 

thermal plate is not greater than 20%. 

To test the results of the qualitative analysis we have carried out numerical calcu- 

lations for 

~The numerical calculations are performed with regard for the temperature dependence of the 

quantities Cp, ~M, %M for air [i0]. 
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TABLE 1 

%/R4/2. .  o 0,2 o,~ 0,6 0,8 1,9 

a 

b 
b~ 

0,33206 
0,33404 
0,29268 
0,29363 

0,589i5 
0,58i71 
0,33751 
0,33441 

0,77849 
0,76982 
0,36i78 
0,35928 

0,93694 
0,92901 
0,37949 
0,37928 

i,07592 
i,06927 
0,39423 
0,39264 

i,20569 
1,18844 
0,40658 
0,4046I 

0 0,8 ~,6 ~c, m 

Fig. i 

. . ,  

2 

Fig. 2 

- - 2  

4 �9 

T~o ~- t T~' O '<  x < x t '  
[Te - -  (Te - -  T1) exp [ - -3000 (x - -  xl) 2] 

[(pv)~ ---- const 

(pu)~ ----- t(pv)~a exp [ - -3000 (x - -  x~) 2] 

for x >~ x~ ; 

for 0<x<x2, 

for x >~ x2. 

(4.1) 

(4.2) 

The momentum-loss thickness ~(i), the energy-loss thickness ~(2), rw ' and qw for laminar 
flow with parameters (0v) w = 0, xl = 0.9 m, u e = 1 m/sec, TI = 1300~ and T e = 300~ are 
given in Fig. la, b in the SI system. The dashed curves represent the results obtained by 
the method of Shvets [5].* It follows from an analysis of the curves in Figs la and ib 
that in the interval of abrupt temperature drop the momentum-loss thickness 641) and energy- 
loss thickness 5(2) as well as the frictional stress and heat flux vary abruptly. The sharp 
reduction in the frictional stress at the wall, beginning with x = xl, is explained by the 
fact that the positive temperature gradient increases rapidly in the interval of abrupt 
temperature drop, thereby retarding the flow and, accordingly, diminishing the frictional 
stress. It is well known that the boundary layer overflows in the case of flow separation. 
This fact accounts for the abrupt increase in the boundary-layer thickness and the momentum- 
and energy-loss thicknesses. Thus, for x > x~ the boundary layer enters the presentation 
state. The change of sign of qw is explained by the formation of a thermal curtain for x > 
x~. This conclusion follows from a comparison of the temperature profiles (solid curves i 
and 2) and velocity profiles (dashed curves 1 and 2) for x = 0.9xi and x = l.lx: in Fig. 2. 
It is seen that the temperature profile for x > xl represents a nonmonotonic function, while 
the velocity profile tends to contract. 

*The syste~of equations (3.4) is solved numerically in this case by the Runge--Kutta method. 
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The disparity between the results obtained by the method of Shvets [5] and by numerical 
integration is attributable to the fact that for x > xl the temperature profile undergoes a 
drastic change, which is not adequately approximated within the framework of the second ap- 
proximation of the method of Shvets [5]. 

Figure 3a, b gives the quantities 6 (I) , 6 (2) , TW, qw in the SI system for turbulent flow 
(solid curves) with parameters (PV)w = 0, x~ = 0.9 m, u e = 1 m/sec, T w = 1300~ and T e = 
300~ while Fig. 4 gives the temperature (solid curves 1 and 2) and velocity (dashed curves 
1 and 2) profiles for x = 0.9xl and x = l.lxz. It is seen that, by contrast with the lami- 
nar case, for turbulent flow there is more rapid growth of the momentum- and energy-loss 
thicknesses 6 (I) and 6 (2) , the velocity profiles are tighter, and the wall temperature gradi- 
ent increases. The dashed curves in Fig. 3b correspond to the case ~p/ay = 0 and, hence, 
3p/ax = 0, as is typical of forced convection. It follows from an analysis of the graphs 
that the presence of gravity forces significantly affects the friction at the surface. As 
for the heat flux, the dashed and solid curves differ only very slightly, i.e., the heat 
flux is weakly dependent on the force of gravity. At x = xl there is an abrupt change in 
the heat flux, which changes sign, because for 0 < x < xl heat is withdrawn from the wall by 
the cold freestream flow, while for x > xl the opposite pattern is observed, i.e., the gas 
flow imparts heat to the cold wall (see Fig. 4). The results of a calculation of a turbulent 
boundary layer with regard for body forces and injection are given in Fig. 5 in the SI system. 
For x < x2 the mass flow rate on the surface of a plate is (pv) w = 2.33"10 -3 kg/m2sec, while 
for x > x2 the quantity (PV)w decreases in accordance with (4.2). The length of the constant- 
injection zone is x2 = 0.9 m, and all other characteristics are taken the same as in the 
version represented by Fig. 3a, b. According to the conclusions drawn from an analysis of the 
integral equation (2.2), the frictional stress and heat flux for this version are smaller than 
in the noninjection case. 
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Thus, with the aid of computer calculations we have corroborated the predictions as to 
the influence of injection and stratification inside the boundary layer on the value of ~w. 
It must be emphasized that sufficient conditions for the existence of separation do not 
follow from the qualitative analysis of relation (2.2), whereas the presence of negative 
terms on the right-hand side of (2.2) is a necessary condition for ~w = 0 to hold. The 
boundary-layer equations, as we know, do not describe separation flows. The latter are de- 
scribed within the framework of the Navier--Stokes equations. On the other hand, the pre- 
separation state of the boundary layer can be deduced by numerical calculations (see Figs. 
I, 3, and 5). 

The foregoing results augment in some measure the well-known theory of the thermal 
curtain [ll] and should prove useful for the analysis of heat and mass transfer associated 
with forest fires [12]. 

The authors are grateful to ~. E. Nakoryakov and his colleagues for a discussion. 
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